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Resonance phenomena of a conducting drop forced by an alternating electric field are 
studied by perturbation analysis. Although the motions are assumed to  be 
irrotational, weak viscous effects are included in the boundary condition of the 
normal stress balance. Without an external field, the first-order expansion of the 
domain perturbations yields the same result as that obtained by Lamb (1932) for the 
viscous decay of the free oscillation modes. A primary resonance occurs in the first- 
order forced oscillation problem. Under strong excitation, superharmonic, sub- 
harmonic, and coupled resonances are revealed in the second-order solutions. Hence, 
large-amplitude drop oscillations may occur even if the excitation frequencies are 
away from the characteristic drop frequencies and the spatial forms of the excitation 
modes do not directly match the drop shape modes. In order to obtain comparable 
response amplitudes, however, the magnitudes of external forcing required to excite 
secondary resonances are shown to be about an order greater than that for the 
primary resonances. 

1. Introduction 
The consideration of drop oscillations is important in a variety of scientific and 

technical problems. Natural raindrops are often in a state of oscillation as seen from 
in situ photographs (Jones 1959). Possible causes of such oscillations have been 
proposed, such as collisions among drops (Beard, Johnson & Jameson 1983) as well 
as resonances with vortex shedding in drop wakes (Gunn 1949; Beard, Ochs & 
Kubesh 1989) and eddies in a turbulent air (Blanchard 1950). There remain, 
however, basic questions about how the drop resonances occur in response to the 
external excitations with various frequencies and spatial forms that exist in natural 
systems. In crystal growth processes, oscillations of free liquid surfaces are 
undesirable since they can cause crystal diameter perturbations, and the accom- 
panying internal fluid flows will also influence the growth segregation behaviour 
(Carruthers 1974). Hence, knowledge of the resonant responses in drops to the 
external vibrations should be also helpful in apparatus design for materials 
processing. 

In many experimental studies of drop oscillations, external excitation forces have 
to be employed to maintain observably large oscillatory amplitudes against viscous 
damping (Trinh & Wang 1982). An effective way to excite large-amplitude 
oscillations is to tune the frequency of the external excitation force so that it is the 

t Also affiliated with the Climate and Meteorology Section, Illinois State Water Survey. 
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same as the characteristic drop frequency of the desired mode (primary resonances). 
The problem specifically concerning the secondary resonances which may occur 
under strong excitation due to the nonlinearities in drop dynamics still remains 
unexplored. The studies of the nonlinear internal resonances of unforced drops 
presented by Tsamopoulos & Brown (1984) and Naterajan & Brown (1986,1987) give 
valuable insight in understanding the complex interactions between the free 
oscillation modes, yet no information has been given about the secondary resonances 
when a drop is forced by external excitations. We found no direct reference in the 
literature to the problem of nonlinear forced drop resonances, although drop 
oscillations have been intensively studied for over a century (e.g. Rayleigh 1879 ; 
Lamb 1932; Brazier-Smith et al. 1971 ; Marston 1980; Tsamopoulos & Brown 1983, 
1984; Beard 1984; Naterajan & Brown 1986,1987; Lundgren & Mansour 1988; etc.). 
Instead of treating the general problem of forced drop resonances with its formidable 
algebra and poorly understood details about various natural forces, in this work we 
present a theoretical analysis of some nonlinear resonances occurring when a 
conducting drop oscillates in response to an alternating electric field. The findings of 
this specific study, however, may provide some insight into drop oscillations excited 
by other types of external forces. 

An analytical method of domain perturbations (Joseph 1973 ; Tsamopoulos & 
Brown 1983, 1984) is utilized to deal with the nonlinear aspects of drop resonances. 
For most cases where detailed studies are presented in this paper, the order of 
magnitude of the drop shape deformations is presumed to be the same as that of the 
external forcing term arising from the alternating electric field. Thus, with respect to 
a small parameter serving as a measure of the magnitude of drop shape deformations, 
the first-order expansion leads to solutions similar to forced linear oscillators. In  
carrying out the expansion to the second order, various secondary resonances may 
appear under the condition of strong excitation. By investigating the solvability 
conditions, which are posed to eliminate so-called secular and small-divisor terms, we 
may gain further information about the first-order oscillation terms which can differ 
significantly from the linear results. 

In order to make use of the domain perturbation technique, we confine the analysis 
to considering very weak viscous effects which are believed to be significant only 
within a thin vortical surface layer so that the motions elsewhere in the drop may be 
reasonably assumed irrotational. The viscous effects are incorporated by a novel 
method of formulating a normal damping stress term in the boundary condition at 
the free surface based on an assumption that the overall rate of work done by this 
damping stress equals the total rate of dissipation of mechanical energy as given by 
Lamb (1932, $329; also presented in Batchelor 1967, $4.1). Thus the derivations in 
this problem deal completely with potential flow so that the complicated 
manipulation of the boundary-layer equations for the weak vortical flow can be 
avoided. Since the field equation governing the irrotational flow is the Laplace 
equation, modifying the boundary conditions a t  the surface should be an acceptable 
means of including the small viscous effects. 

This paper starts in $2 with the mathematical formulation of the governing 
equations and an outline of the perturbation scheme. A detailed derivation of the 
expression for the viscous normal stress that appears in the boundary condition a t  
the free surface is presented in $3. The results of the first-order expansion are 
discussed in $4. The solutions that manifest secondary resonances are studied in $ 5  
where second-order expansions are carried out. A brief summary of the results is 
presented in $6. 
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2. Formulation 
We consider the irrotational and incompressible motion of an electrically 

conducting drop with volume id3, density p, uniform interfacial tension u and zero 
electric charge. The motion is under the influences of an externally applied uniform 
electric field with a pure a.c. component, E,* cosSZ*t*, and a slight viscous damping. 
For simplicity, only the axisymmetric case is involved in this study, where the axis 
of symmetry is parallel to the direction of the external electric field. With an asterisk 
denoting dimensional variables, we define the corresponding dimensionless variables : 
radial coordinate ro = r*/R, time t = t*[u/(pR3)] i ,  velocity potential @ = @*[p/(aR)]i, 
electric potential V = V*/(E:R) ,  electric field E = E*(e,R/u)i, and normal stress 
terms such as pressure, electric stress and viscous stress (Apo,p ,  N,,N,) = (R/u)(Ap$,  
p * , e , q ) ,  where E, (in SI units) is the permittivity of the surrounding medium, 
which is assumed to be a tenuous insulating gas so that both its hydrodynamical and 
electrodynamical effects may be ignored. Thus, in dimensionless forms, the governing 
equations for the velocity potential @ and for the electric potential V are 

V2@ = 0 (0 < ro G F(8,  t ) ) ,  (2.1) 

V2V = 0 (F(8 , t )  G ro G a), (2.2) 

along with the boundary conditions 

(2.4) V = -Yo cos B cos SZt (ro + co), 

a@ aF 1 imw - = -+--- (To = F ( e , t ) ) ,  
at-, at ri ae ae 

+N,+N, = V . n  (To =F"( , t ) ) ,  I (2.6) 

Rr 

J (n- V V ) , ~ , ~ [ F ~  + ( a ~ / a e ) ~ ] i ~  sin ode = 0, 
0 

t . v v  = o = q e ,  t ) ) ,  (2.8) 

where the unit normal and tangential vectors of the drop surface can be written as 

The surface of the drop is described by RF(0, t ) ,  where F(0,  t )  is the dimensionless 
shape function of the drop and 6' is the meridional angle in spherical coordinates 
measured from the axis of symmetry. The condition (2.3) ensures that the velocity 
is finite at  the origin at the centre of mass of the drop, while (2.4) is the far-field 
condition for the electric potential. Equation (2.5) gives the kinematic relation 
between the motion of the drop surface and the local velocity field. The condition 
(2.6) is a normal stress balance at the interface, where the pressure differences caused 
by capillarity and drop motion (from Bernoulli's equation) are equated to the normal 
electric stress N,, having the dimensionless form (Landau & Lifshitz 1959) 

(2.10) 
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and a damping stress Nd which will be derived in detail later in $3. Equation (2.7) 
represents the conservation of electric charge in a conducting drop, and (2.8) 
guarantees that the tangential component of the electric field is continuous across the 
interface. 

I n  addition, the solution for drop shape must satisfy the constraint for constant 
volume of the drop fi F3((e, t )  sin Ode = 2, (2.11) 

and the constraint that the centre of mass of the drop remains a t  the origin 

l F 4 ( 8 , t ) c o s 0 s i n 8 d 0  = 0, (2.12) 

which physically results from Newton's law of motion for the case of zero net force 
on the drop. 

The exact solution to the problem (2.1)-(2.12) is intractable because of the 
nonlinearities and an unknown domain on which it is posed. However, for a nearly 
spherical drop, it is convenient to use the domain perturbation technique to 
transform the drop shape into a unit sphere (Tsamopoulos & Brown 1983). This is 
done by introducing the change of coordinates 

ro = rF(8, t ) .  (2.13) 

Thus the interface ro = F(8, t )  of a complicated configuration is mapped into a simple 
domain r = 1. With respect to a small parameter E ,  used as the scaling of the 
magnitude of the drop deformation from the spherical shape, we may expand every 
dependent variable, say a function f ( ro ,  8, t ; E ) ,  in a Taylor series as 

where 

Moreover, it is usually convenient to  use the notation 

(2.14) 

(2.15) 

(2.16) 
ro=r 

because f r f i l ( r ,  8, t )  can always be expressed in terms off (")(r,  8, t )  as illustrated in 
previous papers (cf. Tsamopoulos & Brown 1983; Feng 1990; Feng &, Beard 1990). 
As can be seen, f <n)(r ,  8, t )  denotes the contribution based on the spherical domain 
r = 1,  whereasf["l(r, 0, t )  is a sum off<")(., 8, t) and other terms that account for the 
deformation of the domain which arise from a/aro. 

Since we are considering the drop deformations caused by the electric surface 
stress stemming from the alternating external electric field, for most cases studied in 
this work, it would be convenient to assume an ordering relation 

(2.17) 
(T 

with K as a constant of proportionality. I n  general, for some resonant problems, 
perturbation analyses can also be conducted under the assumption of ""K, where n 
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is a positive integer, instead of EK on the right-hand-side of (2.17). However, higher- 
order expansion are required to be carried out to reveal the secondary resonances for 
larger n. 

The zeroth-order (8 = 0) solution of the system 

1 
0 

-(r-r-2) cosOcosQ2t 
(2.18) 

recovers, as expected, the static conducting sphere in an electric field which, when 
scaled by E = 0, has no influence to the drop shape. 

The expansion of Laplace equations (2.1) and (2.2) yields 

V2@(”) = 0 (0 < T < l),  V 2 V n )  = 0 (1 < r < 00).  (2.19) 

Therefore the solutions for the velocity and electric potentials a t  each order in E that 
satisfy the natural boundary conditions (2.3) and (2.4) in terms of domain 
perturbations at r = 0 and at r +  co may be written as 

(2.20) 

where P,(O) is the Legendre polynomial of order 1. For convenience, the shape 
function is also expanded at each order in c as 

(2.21) 

As a result, in higher-order expansions of domain perturbations, most boundary 
conditions consist of terms from the contribution based on the spherical domain as 
well as terms that account for the deformation of the interface. Therefore, by 
adjusting the form of the boundary conditions at each order of E ,  the solutions can 
be evaluated on the simple spherical domain. 

In order to properly account for the slower time evolution due to the nonlinear 
interactions among the modes, so that secular and small-divisor terms that may 
appear in the inhomogeneous problems of higher-order asymptotic expansions can be 
avoided, it is usually convenient to make use of the method of multiple timescales 
(Nayfeh & Mook 1979). Thus, the relation 

(2.22) 

will be used in what follows. 

3. Viscous damping stress 
A t  a free surface, the physical conditions to be satisfied for the stress are that the 

tangential component is zero and that the normal component equates the sum of a 
constant term and any contribution from surface tension (Batchelor 1967). If the 
viscous forces are very small in comparison with non-viscous forces, then viscosity 
only produces a thin, weak vortical layer a t  the free surface, while the motion 
remains irrotational throughout the bulk of the fluid. The irrotational motion, 
however, cannot in general satisfy the condition of zero tangential stress at the free 
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surface. Therefore the non-zero irrotational tangential stress near the surface drags 
a thin vortical layer along, making a modification to the velocity field. For a drop 
oscillating in a tenuous gas of negligible dynamic viscosity, viscous effects are 
extremely weak and they can be formulated from the potential-flow solution as a first 
approximation. This sort of argument can also be strengthened by the more rigorous 
calculations and detailed discussion in the papers of Kang & Leal (1987, 1988). 

In  this paper viscous effects are introduced through the normal damping stress Nd 
in (2.6), which equivalently represents the sum of the viscous pressure correction and 
normal visous stress in the more rigorous expressions used by Kang & Leal (1987, 
1988). Instead of going through the analysis of the boundary-layer equations 
describing the weak vortical layer along the drop surface, however, the normal 
damping stress Nd is derived from the formula for estimating viscous dissipation of 
mechanical energy from the potential flow solution (Lamb 1932). Hence the 
mathematical system deals only with potential flow since no explicit analysis of the 
vortical layer is involved. Formally, the damping stress Nd can be mathematically 
determined if we equate the rate of overall work done by Nd to the total rate of 
dissipation of mechanical energy expressed in terms of a potential flow field (Lamb 
1932) : 

= -A (F--- a i a ~ a  - -) [ KT + (- 1 -11 a@ sin Ode, (3.1) 
( ~ P R ) ?  ar, ro ae ae ro ae 

where 'I is the viscosity of the drop, and the dimensionless parameter r(apR)-i may 
be regarded as the ratio of the timescale of viscous damping to the characteristic time 
for the oscillatory motion. It should be noted that when r(apR)-i 2 0.1, the results 
of the irrotational approximation used here differ somewhat from those of the 
normal-mode calculation which, according to Prosperetti (1980), represent the forced 
steady-state shape oscillations as the flow field is sufficiently developed. As r(crpR)-i 
approaches zero, however, the irrotational and normal-mode results will become 
identical to each other (Reid 1960; Miller & Scriven 1968). Hence, the formulation 
given here should be reasonable for r(apR)-i 4 0.1. 

I n  terms of the commonly used normal-mode analysis, Nd is written as 
m -n m 

Therefore, ySn> represents the damping stress coeficient for the lth mode 
corresponding to P,(e). 

By means of the domain perturbation technique, we may expand each term in (3.1) 
a t  ro = F(8,  t )  into corresponding terms at T = 1 with respect to  the small parameter 
E :  

and 
(3-3) 
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Now, if we simply set 

and consider any single mode with the velocity potential 

W) = /3f1>(t) rz&(0), 

then substitution of (3.3) and (3.4) into (3.1) yields 

and thereby we have 
z p p y p  = -2pqz- 1) (2 + 1) ppfi '>, 

y p  = -2p(Z- 1 )  (2 + 1 )  p. 

(3.5) 

Relation (3.8) means that there should not be any explicit viscous effects in the 
absence of the velocity field. 

4. Linear oscillations 
Since the characteristics of linear drop oscillations are well known, it would be 

worthwhile to first examine the basic dynamical behaviour of our formulation in the 
linear expansion case. For the O(s) problem, based on relation (2.17) and ( 3 4 ,  the 
combination of the kinematic condition (2.5) and the equation of normal stress 
balance (2.6) leads to the following dynamical equations for the shape-function 
coefficients : 

a 2 a p  au(l> 

aG 8% 
+2p(2Z+1)(Z- l )~+Z(Z- l ) (Z+2)af1~= 0 ( Z + O ,  1,2) (4.1) 

and (4.2) 

where C.C. stands for the complex conjugate of the preceding terms. The constraints 
(2.11) and (2.12) yield 

0 = a1 (l) = 0, Apil) = - iK( 1 + cos 252%). (4.3) 

"$1) = cf')ehTo+c.c. (4.4) 

A, = -p(2z+l)(z-l)~~~(2z+l)~(z-l)~-z(z-l)(z+2)]~. (4.5) 

Equation (4.1) describes free linear oscillators with linear damping, and has the 
general solution 

where c$l) can be functions of slower timescales T,, T,, . . . , and 

Therefore, in dimensionless form, Lamb's (1932) result for the decay time of the Zth 
free mode corresponds to [lu(2Z+ 1) (Z- 1)I-l and, when p+O, Rayleigh's (1879) 
characteristic frequencies are recovered as [Z(Z- 1) (Z+2)]+. Non-zero p results in a 
frequency lowering. Moreover, for a iven p, aperiodic motion is possible as Z exceeds 
some value such that [Z(Z- 1) (Z+2)]~[(21+ 1) (Z- l)]-l < p. 

Equation (4.2) represents a linear oscillator with linear damping and a single 
harmonic force. Besides the homogeneous solution given by (4.4), it has a particular 
solution of the form 

B 

2 - Q2 - i5pQ e12RT &K+A,K o+c.c., 
[(2-522)2 + 25p2Q2]; 
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where 
3 

8[ (2  - 52')' + 25p2Q2]i ' 
A ,  = 

Hence, a primary resonance will occur when 52 w @z since the excitation force in (4.2) 
varies at twice the frequency of the electric field. As might also be noted, besides 
exciting a two-lobed oscillatory mode, the pure a.c. external electric field also 
produces a quiescent prolate distortion of the drop surface (represented by the first 
term in (4.6)). This quiescent deformation is expected to lower the characteristic 
frequencies (Feng 1990; Feng & Beard 1990). 

It should be pointed out that the statements for the ordering of the electric stress 
(2.17) and damping stress (3.5) in the perturbation calculations do not necessarily 
mean that those constants of proportionality should satisfy K = O( 1 )  and ,u = O( 1) .  
Rather, for the perturbation solutions to be valid, we should scale the shape 
deformation properly, i.e. F(") = 0(1) while c: -4 1.  For example, according to (4.6), 
the resonant peak value for the oscillation amplitude 2A,K at SZ w h2 reads as 
3K/(lO,uuo,). Thus for 2A,K = 1,  we have the relation 

K = 9 . 4 3 , ~ ~  (4.7) 

so we could have K = O(1) while ,u = O(10-') or K = O(10-') for ,u = 0(10-2), etc. to 
keep F(') = O( 1). However, for a given E ,  the value for K should be confined within 
the range where drops are stable. As a point of reference, a water drop in air with 
radius 2.5 mm has p = 0.00235 ( + O . l ) ,  so for c = 0.1 we need K = 0.0222, thus 
E: w 0.85 kV/cm, to satisfy the relation (4.7). 

Furthermore, from the equations for the conservation of electric charge and for the 
continuity of the tangential component of the electric field, the electric potential at 
this level of approximation can be determined as 

5. Secondary resonances 
According to  the linear analysis in the last section, the alternating uniform electric 

field only excites a two-lobed shape oscillation owing to the constraint of the spatial 
form of the first-order electric surface stress and, when 52 is away from h2, the effect 
of the excitation will be small. For a nonlinear system, however, secondary 
resonances may occur under strong (hard) external excitation even if 252 is away 
from its characteristic frequencies (Nayfeh & Mook 1979), and other modes may also 
be excited by the alternating uniform electric field through nonlinear mode 
interactions. In this section, a second-order expansion of domain perturbations is 
carried out and various secondary resonances are investigated. 

In  order to maintain the condition of strong excitation so that the amplitude of the 
external forcing term is one order greater than that of viscous effects, it is 
mathematically assumed that 

rather than ( 3 . 5 ) .  Relation (5.1) apparently means that we are only dealing with the 
situation where the timescale for viscous dissipation, or equivalently of vorticity 
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diffusion from the interface, is much longer than the characteristic time for the 
oscillatory motion. Thus, instead of (3.8) we get 

NP)  = 0, while y i2 )  = -4p(l- 1)(21+1)/3$'); (5.2) 

viscous effects first explicitly appear in the second-order problem. The first-order 
solution thereby takes the form (rather than that given by (4.4)-(4.6)) 

ail) = a1 (1) = 0 ail) = C$l)eiwlTo+c.C., (5.3~) 

(5.3b) 
3 

8(2 - Q2) ' 
and ail) = c61)eiwsTo+~K+11Kei2BTO+c.c., where A = 

with WI" = l(l-1)(1+2). (5.4) 

The free oscillation terms in (5.3) do not explicitly show the viscous decay factor as 
expressed in (4.4) and (4.5). This does not mean that there are no such viscous 
damping effects. The viscous effects are actually contained in the coefficients c( l ) ,  
which are presumed to be functions of slower timescales q,q, .... Thus the 
mathematical forms in (5.3) indeed express the physical meaning of the assumption 
(5.1) of a slower timescale for viscous damping in comparison with that for oscillatory 
motions. As will be seen, the viscous decay factor can be shown to be related to Tl 
in the second-order problem. 

The second-order expansion of the domain perturbations for the kinematic 
condition yields 

.. 

(5.5) 
and the condition of normal stress balance leads to 

(5.6) 

where the symbol ( , ) stands for the inner product of the functions weighted with 
sin 8 on the interval [B = 0,B = K], and 

l(1- 1)  212+21-1 ( I +  1)(1+2) 
'-'(') = (21-1)(2l+l)' "(')= (21-1)(21+3)' I+'(')= (21+1)(21+3)' 

In general, there appears to be an infinite number of combinations of modes j and 
k in (5.5) and (5.6), so the second-order problem becomes the solution for a system 
having infinite degrees of freedom. However, most first-order amplitudes of the j t h  
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and kth modes (4') and cp)) will decay owing to viscous effects. There can only be 
a few non-decaying resonant modes maintained by the external force with a properly 
tuned frequency. In mathematical terms, the first-order amplitude for the lth mode 
will always decay exponentially (see (5.9)), provided that the inhomogeneous terms 
associated with the forced oscillation term in the expression for ail) (equation (5.3b)), 
which has a frequency of 252, do not produce secular and small-divisor terms in the 
equation for the lth mode or in the equation for a mode that has a characteristic 
frequency of double, one half or one third of wl .  The contributions from those 
exponentially decaying first-order modes become negligibly small with time. In most 
cases, it is only necessary to consider one first-order mode which has a non-decaying 
amplitude. When some coupled resonances occur, however, two coupling first-order 
modes must be considered together. It seems impossible to have more than two first- 
order modes excited together by a single harmonic forcing term at the level of a 
second-order approximation with a quadratic nonlinearity. 

5.1. Secondary resonances of the two-lobed mode 
We start with the simplest case where only a two-lobed mode is present in the first- 
order solution, i.e. 

(5.7) 
The dynamical equation for the shape-function coefficient ai2) can be obtained by 

P(l)  = ai1)P2, where mi1) = cil) eiwo To + &K + AK eiznTo + c.c. 

eliminating A2) from (5.5) and (5.6) : 

+ g K ( i  +ei2RTo+c.c.)ai1). (5.8) 

By substituting (5.7) into (5.8), it is seen that secondary resonances may occur 
when 52 x 0, D x &oz and 52 x w2. Primary resonance also takes place when D x $oz, 
the first approximation for which has been given in $4, where the ordering of the 
magnitude of viscous effects is given by (3.5) rather than (5.1) to keep the resonant 
amplitude bounded. There is, however, an alternative way to calculate the case of 
primary resonance, for which the ordering form (5.1) is kept but (2.17) is replaced by 
emRE:2/a = s2K. Hence, the expression for the first-order primary resonant response 
(4.6) can also be determined from the solvability condition for the second-order 
expansion equation. Second-order corrections to the primary resonance case will not 
be pursued in this paper, because it takes tremendous efforts to determine the higher- 
order viscous stress and, on the other hand, its effects are expected to be relatively 
insignificant. If SZ is away from all these resonant values, the solvability condition for 
(5.8) would be 

which yields an exponential decay factor as well as frequency lowering for the first- 
order free oscillation term c$l)eiWoTo + c.c. in (5.7). Hence eventually only forced 
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oscillation (terms associated with AKeiZQTo+ c.c.) can be observed while the first- 
order free oscillations will be damped out, if there are no resonances occurring. It 
would not be difficult to generally show that all first-order modes would manifest 
similar behaviour if 52 does not have the value that can cause resonances. Thus, if the 
excitation frequency 52 is away from the values capable of causing any resonances, 
all of the oscillation modes forced through the nonlinear coupling with the first-order 
forced two-lobed mode (AKeiZQTo+c.c. in (5.7)) can only have an amplitude of 
second order in 8.  The practical effects of the oscillations with second-order 
amplitudes are expected to be of much less significance, so the calculations for the 
non-resonant cases are omitted here. Since the natural periodicity of the drop's 
surface results in a discrete spectrum of the fundamental modes, it would be rare to 
have other modes in resonances when the external forcing is tuned to excite one 
particular mode. So the validity of assumption (5.7) for the study of most secondary 
resonances of the two-lobed mode might be justified. When we study the resonance 
for the case 52 x w2 in $5.1.3, however, the four-lobed mode must be included because 
3w2 = w4 and thereby coupled resonance occurs. 

5.1.1. Slowly varying excitation (52 z 0) 
Since in this case cos252t is slowly varying, 252 is written as €52,. Then 

ei2QT0 = eiRdT,. (5.10) 

The solvability condition for (5.8) would be 

Therefore we have 

(5.12) 

where ci2) could be a function of slower timescales T,, <, . . . . We see that the slowly 
varying external electric field cannot maintain oscillatory motions. 

5.1.2. Superharmonic resonances (52 x &,) 

To express the proximity of 52 to $,, a detuning parameter 52, is introduced by 
defining 

452 = w2 + &d. (5.13) 

Thus 452% = w,T,+O,T, .  (5.14) 

Then the solvability condition for (5.8) would be 

(5.15) 
aCp -+ (5p+ iAu, K )  c i l ) +  i- aT,  140, 

where we define 
387 

- 700, 
AW =-. 

The solution to (5.15) is found to be 
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A ,  K2 

where 

1.0 - 

0.5 - 

- 4  - 3  - 2  - 1  0 1 2 

Qa 
FIGURE 1 .  Frequency-response curves for superharmonic resonances with 

= 0 corresponding to  51 = &02. 

A2 
7w2 [ (Q,  + Aw2 K ) 2  + 25p2];' 

40 + 389' + 8 1 / ( 5 A )  
A,  = ~ 

Therefore to a first approximation, the steady-state solution (as t + CO) is expected 
to be 

F(') = [~&+2AKcos29t+A,K2sin ( 4 9 t - @ ) ] P 2 ( 8 ) ,  (5.17) 

where 0 = tan-' ( (Dd + AwzK)/5,u). As indicated in figure 1, the superharmonic 
resonant peak appears a t  0, = -Aw2K instead of 52, = 0 owing to  the frequency 
shift resulting from the quiescent deformation of the interface shown in (4.6). The 
enhancement of such a frequency shift as K increases is shown by the frequency- 
response curves with different values for K. 

Using the same point of refefence as in $4 (2.5 mm radius water drop in air), 
E: x 4.2 kV/cm will be needed to excite oscillations a t  D = i (wz-eAw2K) with 
E = 0.1 and ASK2 = 1. Hence, in order to have the same amplitude of oscillation, 
excitation through secondary resonances needs a stronger external field than that 
needed by the primary resonance (where E: x 0.85 kV/cm is required). At the same 
excitation frequency for superharmonic resonance, the solution of the linear problem 
(the second term in (5 .17))  renders only about 27% of the amplitude given by the 
third term. Since the third term in (5.17), corresponding to  superharmonic resonance, 
is proportional to K 2 ,  it will however disappear more rapidly than the second term 
as K vanishes, and this solution approaches the solution of the linear problem. 

The scaling relations (3 .5)  and (5.1) apparently require different magnitudes of 
viscous effects for the problems of primary and secondary resonances. In  reality, 
however, as long as the viscous effects are relatively weak (v(apR)-i 4 0.1) so that the 
treatment in $ 3  should be reasonable, both (3 .5)  and (5 .1)  can be applied to the same 
physical system as shown in our examples for a 2.5 mm water drop in air. The small 
parameter 6 is a mathematical device only for book-keeping in perturbation 
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manipulations, whereas for a drop with a given viscosity the magnitude of 
oscillations is controlled in practice by changing the electric field intensity (EZ) and 
excitation frequency (52). In other words, for an arbitrarily given small parameter E 

and the physical properties (y, CT, p and R )  of the drop in question, ,U can be 
determined either from the relation (3.5) or (5.1) depending on whether the problem 
is primary or secondary resonances. Then, the magnitude of oscillations is calculated 
from the applied electric field intensity EZ through K and the excitation frequency 
52. 

Qualitatively similar results of the superharmonic resonance studied here will be 
expected for the case when 52 x &, = &, ; in this instance the equation for the four- 
lobed mode will have terms of frequency 452 that will lead to small-divisor terms. 
This actually provides a way to excite marked four-lobed shape oscillations with a 
uniform electric field, which only excites two-lobed shape oscillations according to 
linear analysis. 

5.1.3. Coupled resonance of two- and four-lobed modes (52 x w,) 

Since in this case simultaneous resonance for both two- and four-lobed modes 
occurs, in addition to (5.7) we must also include a four-lobed mode to the first-order 
solution. Therefore, 

F<l)  = ail)P, + ai1)P4 = ( c i l )  eiWs To + &K + AK eiznT0 + c.c.) P, + ( c i l )  eiW4 To + C.C. ) P,. 
(5.18) 

To analyse this kind of coupled resonances to first order, we let 

52 = 02+€szd, 

so that (252-W,) % = 0, %+2RdT,7 (W4-252) = O2 %-252, q. (5.19) 

The dynamical equations for the two coupled modes yield solvability conditions of 
the forms 

and 

where 

and 

a c p  

aT,  
- + (27,~ + iAu, K )  c i l )  + iC,, Kcil)  ei2nd = 0, 

c 2 2  = 280, [ /1 (160+140~)+~]  x 0.194, 

1 
280, 

C 2 4  = - [A(384 + 6 ~ :  + 960;-640, 04) + 241 x 0.265, 

[/1(2880-2520;)+432] x 0.318, 
1 

1400, 
c,, = - 

4489 
4 -  1540, 

AO =-. 

(5.20 b) 
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so that (5.20a, b)  lead to 
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3 - 4  - + 5pA, - (0, + Aw2 K - C2, K )  A ,  - C2, KBi = 0, 
aT, 

(5.21 a)  

- 3 4  + 5pAi + (0, + Aw2K+ C22 K )  A ,  + C24KB, = 0, (5.21 b)  
aT, 

-+ 27pB, - (352, + Aw4 K )  Bi - C4,KAi = 0, 

3+ 27@, + (352, + Aw4 K )  B, + C4, KA, = 0 ; 

(5.21 c) 
aT, 

aT, 
(5.21d) 

where we put A = A,+iAi and B = B,+iB,. 

Equations (5.21 a-d) are a set of linear equations having constant coefficients, so the 
solution can be expressed in the form 

(A,,Ai,B,,Bi) = (a,,ai,b,, bi)eAKT1, (5.22) 

where a,, a,, b,, b, and h are constants. Upon substituting (5.22) into (5.21), i t  is found 
that in order to have a non-trivial solution, h must be the eigenvalues of the matrix 

9 (5.23) 3b, + Au4 

t4 I - 5ji 8, i- Aw2 - C2, 0 

- ( d d  + Aw2 + c22) - 5ji - '24 

0 '42 - 27ji 
- '42 0 -(3fi,+Aw4) -27 i  

ji& Q = -  A 'd 
K '  d - K '  

[ 
where we define 

The characteristic equation for (5.23) is a quartic equation. When all the real parts 
of the four values of h are negative, the oscillation terms associated with cil) and cil) 
will decay exponentially. For the motions of the resonances to become noticeably 
large, at  least one of the real parts of the four eigenvalues should be greater than zero. 
A positive real part of eigenvalues h does not necessarily imply exponentially 
growing amplitudes without bound. Actually, in many cases the amplitudes have 
been shown to have finite values when numerical calculations of the primitive 
nonlinear equations are carried out (Nayfeh & Mook 1979) or the solvability 
condition for the third-order problem is studied (Nayfeh 1983). Although the present 
perturbation analysis cannot provide detailed information about the large-amplitude 
motions, it clearly points to the conditions for the presence and absence of resonant 
oscillations. 

Shaded areas in figure 2 indicate the regions in the (dd,b)-plane where the 
maximum real part of the eigenvalues is positive. It is obvious that large-amplitude 
oscillations will probably occur when Rd x -Aw2, where the frequency of excitation 
is tuned to match the shifted frequency for the two-lobed mode caused by the 
quiescent deformation. When viscous effects are extremely small in comparison with 
the excitation field intensity, two-degree-of-freedom coupling results in two 
additional paramete; ranges where large-amplitude oscillations Fight be observed : 
one appears when 0, x -a(Aw2+Aw4) and another close to 30,  x -Aw4. Taking 
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-2.5 - 2.0 - 1.5 - 1.0 

FIGURE 2. Regions in the (dd,b)-parameter plane for the exponentially growing (shaded) and 
decaying (unshaded) amplitudes of the coupled resonances as SZ e 02. 

4 

,4 = 0.0366, which is about the maximum value possible for h to have a positive real 
part, E: x 4.6 kV/cm will be needed for the excitation of large-amplitude 
oscillations, for a water drop in air with radius 2.5 mm. 

5.2. S u b h m n i c  resonance of the third mode (0 x w,) 

By virtue of the quadratic terms in the second-order equations (5.5) and (5.6), every 
lth mode can be excited at  least as 52 x wl .  If there are no other modes internally 
interacting with this lth mode in resonance, the problem becomes a single-degree-of- 
freedom subharmonic resonance. As an example of such a subharmonic resonance of 
a single mode, we solve for the case of 52 x W ,  in this subsection. Similar behaviour 
for the case of SZ x w4 and other single-mode excitations should be expected. 

The detuning parameter here is defined by 

(252-w3T,) = waT,+2SZ,T,. 

The solvability condition for the third mode takes the form 

where 

and 

ac(1) 

aT, 
3 + (14416 + iAw, K) c i l )  + iC,, K@ ei2*d = 0, 

1 
C,, = - { A [ 2 5 6 + ~ S Z 2 + ~ i - ~ Q ~ , ] + ~ }  w 0.518 

20W, 

41 1 
Aw, = -. 

28w, 

(5.24) 

(5.25) 

If we let 
ci l )  = AeiadT1 with A =A,+iA, ,  (&A,) = (u,,u,)eAKT1, (5.26) 

in order to have a non-trivial solution we must have 

h = - 14,d [Ci, - (8, + Aw,)~]~. (5.27) 
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~~ 0.01 0 

-3.5 - 3.0 -2.5 - 2.0 

FIQURE 3. Regions in the (&,$)-parameter plane for the exponentially growing (shaded) and 
decaying (unshaded) amplitude of the subharmonic third-mode resonances as C2 x wQ. 

6, 

Hence the condition for A to  become large is that ( ~ , + A o ~ ) ~  < C;,- 196b2. When 
,il> s3,, A always decays exponentially. For the excitation of a single mode such as 
the case of SZ near war figure 3 shows that in the (d',,P)-plane there is only one region 
where large-amplitude oscillation may occur, unlike the case of excitation of two 
coupled modes where three regions may appear, as seen in figure 2. For a water drop 
in air with radius 2.5 mm, E,* w 4.6 kV/cm will be needed for the excitation of large- 
amplitude subharmonic oscillations of the three-lobed mode a t  SZ w w3. 

6. Conclusions 
The perturbation analysis of nonlinear dynamical equations for a conducting drop 

with slight viscous effects in an alternating electric field provides basic insight into 
the secondary resonances occurring when both the frequency and spatial form of the 
excitation do not directly match the characteristic frequencies and the mode shapes 
of the drop. For the two-lobed mode, large-amplitude oscillations are shown to be 
possible when the frequency of external excitation is close to &, (superharmonic 
resonance) and 20, (coupled resonance) due to the quadratic nonlinearity in the 
second-order problem. If the excitation frequency is near 2w,, inducing the resonance 
of the two-lobed mode, large-amplitude oscillation of the four-lobed mode will also 
be excited because w4 = 3w, and thereby 2SZ+w, w w4 when 20-w, w w,. This kind 
of coupling of two modes is unique in forced oscillations, whereas i t  appears in a free 
oscillation system only when the third-order expansion is carried out, which presents 
a cubic nonlinearity (Tsamopoulos & Brown 1984 ; Natarajan & Brown 1987). Large 
(first-order) amplitude oscillations of other modes are also found in studying the 
second-order problem when 252-w, w ol (subharmonic resonances), even though the 
spatial form of the first-order electric stress only coincides with the two-lobed mode. 

According to the results obtained in this paper, when the electric field intensity is 
large enough, in addition to  the primary band obtained from the linear analysis there 
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FIGURE 4. The (a*, E,*)-plane showing the parameter regions (shaded) for the response oscillation 
amplitudes of the two-lobed mode greater than one-tenth of the drop radius. Dimensional 
quantities are evaluated for a water drop with 2.5 mm radius in air. 

are two small bands of the alternating frequency of the electric field, within which 
large-amplitude two-lobed mode oscillations are excited. This feature is shown in 
figure 4 for a water drop of 2.5 mm radius in air, where the shaded areas indicate the 
values for the electric field intensity E,* and frequency Q* to produce the two-lobed 
oscillation with amplitude greater than one-tenth of the drop radius. All quantities 
in figure 4 are shown in dimensional values denoted with asterisk. The primary band 
from linear analysis covers the largest area. For the coupled resonance, with the 
excitation frequency near 2 4 ,  no quantitative information about the oscillation 
amplitudes is available from the second-order perturbation analysis. This band is 
contoured with a dashed line to show the region of exponential growth of initially 
small oscillation amplitudes. Both secondary resonance bands tilt towards lower 
frequencies as the electric field intensity increases owing to the shift of the drop's 
characteristic frequency by the quiescent deformation. The relatively small 
frequency shift for the primary band is not revealed by linear analysis. When E,* 2 
8.5 kV/cm, there is an area where the superharmonic band intersects the primary 
one. Thus the oscillation amplitudes for both the harmonics with frequencies around 
w: and $i$ become noticeable. The areas of the small bands of secondary resonances 
are about an order smaller than that for the primary resonance, but with a properly 
tuned excitation frequency for the secondary resonance, the electric field intensity 
required for the excitation of large-amplitude oscillations is much less than that 
predicted by linear analysis. 

Although the analysis in this paper deals with a specific physical problem of the 
oscillations of conducting drops excited by an alternating electric field, drop 
oscillations forced by other types of external excitations might exhibit similar 
phenomena, in view of the similar resonant behaviour found in other quadratic 
nonlinear systems where the physical forcing mechanisms are quite different from the 
present model (cf. Nayfeh & Mook 1979). Hence, the ubiquity of raindrop oscillations 
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might be attributed to some secondary resonances with drop vortex shedding whose 
frequencies and spatial distributions, in general, differ from the characteristic 
frequencies and shape modes of the drops. 

In  designing an apparatus that can produce large-amplitude oscillations in the 
liquid drops one should take the secondary resonances into consideration, besides the 
well-known primary resonances. For instance, although the electrodes of certain 
geometry can produce an electric stress that matches only particular drop shape 
modes, other mode oscillations may also be excited, in the light of secondary 
resonance theory, by adjusting the voltage and frequency applied on the electrodes. 

Moreover, for the secondary resonances to occur, the magnitudes of external 
excitations are required to be about an order greater than that for the primary 
resonances to  produce comparable oscillation amplitudes. Hence, much stronger 
external forcing is expected to excite observable oscillations through other possible 
secondary resonances that may be revealed by carrying out third- or higher-order 
asymptotic expansions. As the quiescent shape of deformation is enhanced under a 
very strong external electric field, however, the drop may become unstable (Brazier- 
Smith et al. 1971). Hence, in practice there exists an upper limit for the magnitude 
of the alternating electric field that can be applied to  excite drop oscillations. 
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